메뉴 건너뛰기

SuperResolution Image Processing Lab.

본 연구실 박사과정인 이진욱 학생이 연구한 “Blind Image Deblurring via Bayesian Estimation Using Expected Loss” 제목의 논문이 IEEE Access  (Impact factor : 3.4, Rank : Q2)에 게재가 확정되었다. 본 연구는 이진욱 학생(1저자)와 강문기 교수(교신저자)가 진행하였다.


Abstract

This paper introduces a new approach to single image blind deblurring via Bayesian estimation using expected loss, diverging from traditional maximum a posteriori (MAP) estimation methods that are limited by the delta kernel problem-a phenomenon where blur kernels are inaccurately estimated as delta functions due to the disparity of the number of pixels between the latent image and the kernel, leading to blurry latent images. We introduce the concept of robust intensity patch (RIP) values, which are median pixel values within local image patches, demonstrating remarkable stability through the blurring process. These RIP values are proposed as feasible substitutes for ground truth images, which are often unavailable in real-world scenarios due to the inherent difficulty of capturing both blurred and perfectly sharp versions of the same scene under identical conditions. We have developed a new loss function named robust intensity loss (RIL), designed to selectively penalize the latent image. This function aims to equalize the imbalance in the number of pixels between the latent image and the kernel. Through this approach, we have successfully redefined Bayesian estimation using expected loss as an optimization problem. Our contributions include the first application of Bayesian estimation using expected loss for single image deblurring, the introduction of RIP values, the development of the RIL function, and the integration with an advanced optimization scheme to significantly enhance deblurring accuracy. Our empirical results demonstrate the effectiveness of our method across various benchmark datasets, representing the way for future advancements in image deblurring.

번호 제목 글쓴이 날짜 조회 수
» 이진욱 학생 Blind Image Deblurring via Bayesian Estimation Using Expected Loss 논문 IEEE Access 게재 웹마스터 2024.10.02 33
83 정경훈 박사 Multispectral Demosaicing Based on Iterative-Linear-Regression Model for Estimating Pseudo-Panchromatic Image 논문 Sensors 게재 웹마스터 2024.10.02 38
82 김한솔 박사 Multi-frame demosaicing for the Quad Bayer CFA in the color difference domain 논문 Optics Express 게재 웹마스터 2024.10.02 28
81 이해근 박사 Overlapping Group Prior Image Deconvolution논문 SIGNAL PROCESSING 게재 관리자 2023.05.22 290
80 창립기념일 "최우수 피인용 표창" 수상 file 웹마스터 2023.05.15 215
79 박종은 학생 Super-Resolution Kernel Estimation 논문 Sensors에 게재 관리자 2023.04.07 228
78 이해근 박사 Infrared Image Deconvolution논문 Sensors에 게재 관리자 2023.03.13 162
77 홍순영 학생 Single image dehazing논문 Neurocomputing에 게재 관리자 2021.12.17 419
76 이성우 학생 신호처리합동학술대회 우수논문 선정 관리자 2021.10.01 280
75 이해근 학생 Automatic Prior Selection 논문 Signal Processing에 게재 관리자 2021.08.30 4552
74 한재덕 박사 Thermal Image Restoration 논문 Sensors에 게재 관리자 2021.08.30 404
73 이상윤 학생 Poisson Gaussian noise reduction 논문 IEEE Access에 게재 관리자 2021.08.10 1111
72 홍순영 학생 Nighttime image dehazing논문 IEEE Access에 게재 관리자 2021.08.10 203
71 김민섭 학생 Road scene dehazing/adaptive atmospheric PSF논문 IEEE Access에 게재 관리자 2021.08.10 15453
70 김종현 학생 Depth Super-resolution 연구, IEEE Access 논문 게재 file 관리자 2020.09.07 1059
69 홍순영 학생 Signal Processing 에 논문게재 확정 조교 2020.08.11 2327
68 김한솔 학생 Sensors 에 논문게재 확정 관리자 2020.08.11 35639
67 한재덕 학생 IEEE Transactions on Circuits and Systems for video Technology 에 논문게재 확정 file 관리자 2020.03.03 1940
66 송기선 연구원 IEEE Transactions on Circuits and Systems for video Technology 에 논문게재 확정 file 관리자 2019.11.02 3416
65 김민섭 학생 IEEE Access 에 논문 게재 확정 file 관리자 2018.12.22 4160