메뉴 건너뛰기

SuperResolution Image Processing Lab.

본 연구실의 홍순영 학생이 연구한 “Single Image Dehazing Based on Pixel-Wise Transmission Estimation with Estimated Radiance Patches” 제목의 논문이 Neurocomputing (Impact factor : 5.719, Rank : Q1) 에 게재가 확정되었다. 본 연구는 연세대학교 전기전자공학과 통합과정 홍순영 학생(1저자)과 강문기 교수(교신저자)가 진행하였다.

Abstract 
Images acquired outdoors can be affected by atmospheric conditions, such as fog and haze, and image dehazing is used to restore scene radiance in hazy images. In image dehazing, atmospheric light and transmission estimation are essential; transmission estimation is an essential step. In particular, the dark channel prior (DCP) is widely used for the transmission estimation. When using DCP-based methods, an initial transmission map is obtained through a morphological operation based on the assumption that the scene transmission in a local area is constant. However, the depth discontinuity problem cannot be avoided, and outliers are produced in the process of refining the initial transmission map. In addition, the estimation accuracy varies depending on the scene configuration due to the limitations of DCP-based methods, which simply estimate the transmission based on pixel intensity. To overcome these problems, we propose the pixel-wise transmission estimation method with estimated radiance patches (PTERP) for image dehazing. We first approximate the transmission range in the pixel location using the transmission map obtained using DCP. A patch is then set around each pixel, and several estimated radiance patches are obtained using each value belonging to the transmission range. The transmission value in the corresponding pixel location is determined using the information from the estimated radiance patches. The transmission map is then obtained by estimating the transmission value for each pixel in the entire image. With this approach, scene radiance can be restored using the determined transmission map. We performed experiments using various images, and the results demonstrated that proposed PTERP outperformed the conventional methods both quantitatively and qualitatively.
번호 제목 글쓴이 날짜 조회 수
84 이진욱 학생 Blind Image Deblurring via Bayesian Estimation Using Expected Loss 논문 IEEE Access 게재 웹마스터 2024.10.02 34
83 정경훈 박사 Multispectral Demosaicing Based on Iterative-Linear-Regression Model for Estimating Pseudo-Panchromatic Image 논문 Sensors 게재 웹마스터 2024.10.02 38
82 김한솔 박사 Multi-frame demosaicing for the Quad Bayer CFA in the color difference domain 논문 Optics Express 게재 웹마스터 2024.10.02 28
81 이해근 박사 Overlapping Group Prior Image Deconvolution논문 SIGNAL PROCESSING 게재 관리자 2023.05.22 290
80 창립기념일 "최우수 피인용 표창" 수상 file 웹마스터 2023.05.15 215
79 박종은 학생 Super-Resolution Kernel Estimation 논문 Sensors에 게재 관리자 2023.04.07 228
78 이해근 박사 Infrared Image Deconvolution논문 Sensors에 게재 관리자 2023.03.13 162
» 홍순영 학생 Single image dehazing논문 Neurocomputing에 게재 관리자 2021.12.17 419
76 이성우 학생 신호처리합동학술대회 우수논문 선정 관리자 2021.10.01 280
75 이해근 학생 Automatic Prior Selection 논문 Signal Processing에 게재 관리자 2021.08.30 4552
74 한재덕 박사 Thermal Image Restoration 논문 Sensors에 게재 관리자 2021.08.30 404
73 이상윤 학생 Poisson Gaussian noise reduction 논문 IEEE Access에 게재 관리자 2021.08.10 1111
72 홍순영 학생 Nighttime image dehazing논문 IEEE Access에 게재 관리자 2021.08.10 203
71 김민섭 학생 Road scene dehazing/adaptive atmospheric PSF논문 IEEE Access에 게재 관리자 2021.08.10 15453
70 김종현 학생 Depth Super-resolution 연구, IEEE Access 논문 게재 file 관리자 2020.09.07 1059
69 홍순영 학생 Signal Processing 에 논문게재 확정 조교 2020.08.11 2327
68 김한솔 학생 Sensors 에 논문게재 확정 관리자 2020.08.11 35639
67 한재덕 학생 IEEE Transactions on Circuits and Systems for video Technology 에 논문게재 확정 file 관리자 2020.03.03 1940
66 송기선 연구원 IEEE Transactions on Circuits and Systems for video Technology 에 논문게재 확정 file 관리자 2019.11.02 3416
65 김민섭 학생 IEEE Access 에 논문 게재 확정 file 관리자 2018.12.22 4160